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Abstract

An algebraic modeling language is a domain speci�c computer programming lan-

guage for describing and solving mathematical programming models. We propose ex-

tending algebraic modeling languages so that solution algorithms that are based on

iteratively manipulating, modifying, and solving a model are supported at a high ab-

straction level. We speci�cally focus on Stochastic Programming models with random

parameters formulated as discrete scenarios, and mathematical decomposition algo-

rithms, which are commonly applied to solve such models. We identify the necessary

language constructs, and develop a design based on the open source modeling soft-

ware APLEpy. The proposed design, although speci�cally addresses decomposition

algorithms, proves useful for implementing heuristic solution algorithms as well. The

object oriented nature of the design results in the algorithms, coded with the proposed

extensions, to work, without any modi�cation, with any other model that satisfy the

assumptions of the initial model. This �exible and robust design helps inexperienced

modelers to immediately apply an advanced solution algorithm, and experienced mod-

elers to build sophisticated algorithms easily within the same development environment

used to describe the model under consideration.
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1 Introduction

We refer to the software tools that are used to describe a mathematical programming model,

as a prelude to solving it, as algebraic modeling and programming software (AMPS). An

AMPS product is a stand alone package that provides a specialized development environ-

ment and a domain speci�c (and vendor speci�c) programming language. The specialized

language, which is referred to as an algebraic modeling language (AML), provides a high level

interface to describe the elements of a model in a way that closely parallels its corresponding

algebraic formulation.

As more involved modeling approaches, such as Stochastic Programming, start to become

widely practised, the AMLs are extended to provide language constructs in dealing with the

complexities of describing such model types. In this paper we focus on language features

that support Stochastic Linear Programming (SLP) models with recourse. We assume that

random input parameters are described in the form of discrete scenarios.

The SLP models we consider are expressed as large scale mathematical models with a special

structure. The special modeling language constructs aim at describing this special structure

in a simple and transparent manner to the modeler. However, these type of SLP models

can rarely be solved as they are, due to their large size. Fortunately, there are well estab-

lished exact and heuristic solution algorithms that take advantage of the special structure

of a SLP model. These solution algorithms are based on de�ning subproblems by decom-

posing, reducing, modifying, restoring the original problem, and solving the subproblems

in an iterative fashion. In particular, mathematical decomposition is the most commonly

used approach used to solve a SLP model. The information needed to implement such al-

gorithms is contained in the model description, however, an AMPS user has to gather and

organize that information and describe the algorithm with a language that is not speci�cally

designed for such use. Therefore, we submit that there is a need to provide AML extensions

to support algorithm design to solve SLP models. This need is further evidenced by the fact
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that most, if not all, AMPS packages come with example code that illustrates how to apply

mathematical decomposition algorithms in their language.

1.1 Literature

A recent survey of AMPS products, and the current state of research in AMLs can be found in

Fourer (2005), and Kallrath (2004) respectively. Research on SLP extensions for modeling

languages have mostly focused on developing data structures and language constructs to

support describing a SLP model (Gassmann and Ireland (1995); Fourer (1996); Gassmann

and Ireland (1996); Gassmann (1998); Buchanan et al. (2001); Entriken (2001); Valente et al.

(2001); Dominguez-Ballesteros et al. (2002); Domenica et al. (2004); Valente et al. (2005)).

The AMPS vendors are also releasing their own implementation in their products. Some

examples of packages with SLP modeling support are: Xpress-Mosel (Guéret et al. (2002)),

SAMPL (Valente et al. (2005)), GAMS (Brooke et al. (1998)), and MPL (Kristjansson

(2003)).

Lately, AMPS products are evolving to become an integrated development and solution

environment, by providing options for applying high level solution algorithms. Of particular

interest to SLP modeling are the SPInE (Valente et al. (2004)), and the MPL packages.

These packages o�er options to apply well known mathematical decomposition algorithms,

automatically, to solve a SLP model. This kind of support is welcome, because SLP models

are rarely solved as they are due to their large size.

However, it is not practical to provide every imaginable solution algorithm in a development

environment. There are cases where a straightforward application of decomposition does not

work and some tweaking is required. There is also some �exibility in determining the details

of a mathematical decomposition algorithm, which would be di�cult to capture by menu

options. We believe that a better approach is to provide language extensions to describe high

level solution algorithms, such as mathematical decomposition. That way, a large variety
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of algorithms can be implemented by the modeler. The objective of this paper is to design

modeling language constructs for algorithm development in solving large scale SLP models.

These extensions would provide a higher abstraction layer for ease of development, while

retaining enough �exibility to support implementing creative heuristic algorithms. We base

the design on the open source modeling software APLEpy being developed by Karabuk

(2005). The APLEpy package provides classes to describe a mathematical programming

model in the Python programming language. Python is a general purpose, object oriented

language, and as such it provides a robust and �exible foundation for our design.

As the �rst step of this overall research, we exclusively focus on supporting Lagrangian

relaxation and L-shaped decomposition algorithms, which are commonly used for solving

SLPs. The experience gained in this part would help make progress towards addressing

general mathematical programming models, in a more general design framework.

In the next section, we formally describe the type of SLPs, and the decomposition algorithms

we focus on. We also identify the requirements of the design in this section. This is followed

by the description of the APLEpy environment in section 3. Next, we describe the proposed

design in section 4 and demonstrate its use in APLEpy. Finally, we o�er a conclusion in

section 5.

2 Problem de�nition and scope

Stochastic programming approach explicitly incorporates uncertainty in the formulation of

a mathematical programming model. This loosely de�ned purpose can be achieved in many

forms resulting in di�erent model structures as summarized by the taxonomy of SLPs in

Gassmann and Ireland (1996). In this paper, we focus on recourse models with discrete

scenarios. In a recourse model, the decision variables are partitioned into here-and-now

decisions and wait-and-see decisions. As the names imply, the former set of decisions have

to be made at the present time under uncertainty, and the latter decisions are deferred until
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after uncertainty clears. The former type of decisions are made as a reaction to unfolding

random events. These types of models have a high descriptive power and their special

structure lends itself well to mathematical decomposition based solution algorithms. As a

result, most SLP applications reported in the literature are based on recourse models.

Central to the formulation of a recourse model is a data structure referred to as a scenario

tree, which shows stages in which random events unfold and decisions are made. Figure 1

shows an example scenario tree for a problem that spans �ve stages and includes six scenarios.

A node in the tree is associated with outcome of an event that leads to a particular realization

of the random parameters of the model; hence they are referred to as event nodes (nodes for

short). The root node corresponds to the starting point of the planning horizon at which

time no random event has cleared yet. As seen in the tree, nodes have unique labels (t,s)

used as reference indices, which are utilized in the mathematical formulation of the problem.

This labeling technique is due to Gassmann and Ireland (1995). A scenario is a complete

path of nodes starting from the root node of the tree and terminating at a leaf node. It

de�nes a sequence of events that make up one particular realization of the future through

the planning horizon. Leaf nodes of the tree identify individual scenarios with an associated

probability of occurrence, which in turn depends on the probabilities of the nodes that make

up its path. Path probability of a node is represented by pts which we do not show in the

�gure for brevity. Note that pts values at leaf nodes are equal to ps (scenario probability)

values in �gure 1. The decisions that are to be made independent of random outcomes

(here-and-now decisions or stage-one decisions) are referred to by X. The decisions that can

be deferred until the outcome of an event becomes known (wait-and-see decisions or recourse

decisions) are referred to by Yts. The recourse variables are indexed by the associated event

node (t,s).

The node labeling method we employ uses two indices t, and s : the �rst index t indicates

the stage that the node is in, whereas, the second index s indicates the lowest numbered

5



Figure 1: Illustration of a scenario tree
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scenario that shares the node. For example, consider scenario 2 (in �gure 1) and its path

of nodes [(1,1), (2,1), (3,1), (4,2),(5,2)]. It is the only scenario with path that goes through

nodes (4,2) and (5,2) in stages 4 and 5 respectively, hence s=2 for both nodes. On the other

hand, in t=3, both scenario 1 and scenario 2 share node (3,1), as a result s takes the value

1, which refers to the lowest numbered scenario. Similarly, in t=2, scenarios 1, 2, and 3 go

through the same node (2,1), whose s index is set to 1. Also note that, a node takes its

initial state from its parent node. This representation ensures that scenarios that share the

same sequence of events also share the same decisions until they split. This is referred to

as the nonanticipativity (NA) condition. A general formulation for a multistage SLP model

with recourse is presented below.
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SLP1

min cxX+
∑

(t,s)∈E

ptsc
y
tsYts

subject to

AtX = bt t = 1

BtsX + AtsYts = bts ∀(t, s) ∈ E|t = 2

BtsY(t,prev(t,s)) + AtsYts = bts ∀t ∈ T |t > 2,∀(t, s) ∈ E

The formulation assumes that any of the model parameters (i.e., c, A, b) can observe a

random realization at a node. The function prev(t,s) returns the scenario index of the

predecessor of node (t,s). The notation E refers to the set of event nodes in the tree.

An alternative formulation, which is commonly exercised, is formed by describing each sce-

nario problem independently and imposing the NA constraints explicitly. This formulation

is shown below.

SLP2

min
∑
s∈S

psc
xXs+

T∑
t=2

∑
s∈S

psc
y
tsYts

subject to

AtXs = bt t = 1,∀s ∈ S

BtsXs + AtsYts = bts t = 2,∀s ∈ S

BtsYts + AtsYts = bts t > 2,∀s ∈ S

Xs −Xś = 0 ∀s, ś ∈ S (1)
Yts −Ytś = 0 ∀s, ś ∈ NAts (2)

Note that the root node is also part of the scenario tree and it is shared by all scenarios.

Therefore, stage one variables (X) are also replicated for each scenario. However, constraints

(1) ensure that every copy take the same value. Similarly, constraints (2) impose NA condi-

tions on the rest of the nodes. For example, consider node (2,4) which is shared by scenarios

4, 5 and 6 in stage 2: constraints (2) include Y24 = Y25 = Y26.
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2.1 Lagrangian relaxation solution

Formulation SLP2 is suited for use with Lagrangian relaxation based solution approaches.

Algorithm 1 below outlines an application of the method to SLP2. Relaxing and dualizing

the last two constraints of SLP2 results in the remaining formulation to decompose into

independent scenario subproblems. The solution to the dualized problem, for any value

of the dual multipliers, constitute a lower bound for the original problem. The algorithm

iteratively searches for a set of dual multipliers (represented by λ in Algorithm 1) that

maximizes the lower bound. There are di�erent methods reported in the literature for both

dualizing the constraints and searching the dual solution space. In most applications the

dualized constraints are added as linear terms to the objective function. However, employing

an augmented Lagrangian approach adds quadratic terms to the objective function (see

Karabuk and Wu (2002) for an example application). The latter is proven to converge better

at the expense of making the subproblems quadratic. Another advantage is that they require

simple multiplier adjustment methods. The progressive hedging algorithm of Rockafellar

and Wets (1991) is one well known approach based on augmented Lagrangian. Some of the

dual search methods mentioned in the literature are, subgradient optimization, multiplier

adjustment, and dual ascent techniques (Beasley (1993)). The subgradient optimization

technique seems to be the most commonly used technique due to its empirical success. It

requires the calculation of an upper bound at each iteration. This is done by applying a

heuristic to convert the current infeasible solution to a feasible one. This upper bound,

together with the current infeasibility amount of dualized constraints, is used to update the

dual multipliers.

The Lagrangian relaxation algorithm, applied to a linear continuous problem, converges to a

solution of dual multipliers at which the feasibility violations on dualized constraints are zero.

At this point, the lower bound is equal to the upper bound (the feasible solution), therefore

the original problem is solved optimally. This solution method, however, is commonly applied
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Algorithm 1 Lagrangian relaxation algorithm
SLP2(X,Y)→ SLP2(X,Y, λ) {Relax and dualize (9), (10)}
k ← 1
repeat
for all s ∈ S do

Solve SLP2s(X,Y, λk)
Infeasibility ← (Xk

s −Xk
s′) + (Yk

ts −Yk
ts′)

k ← k + 1
λk = λk−1 + δk {Update duals, continue dual search}

until Infeasibility < tolerance

to solve integer problems. In those cases, it works as a heuristic (Takriti and Birge (2000)).

2.2 L-shaped decomposition solution

The L-shaped decomposition algorithm, developed by Slyke and Wets (1969), has been ex-

tensively applied to both two stage and multistage SLP models. The multistage version is

signi�cantly more complicated than the two stage version. Thus, it deserves a complete study

of its own, as demonstrated by Gassmann (1990), and Birge (1985). Consequently, we con-

sider applications to two stage SLPs (see Bienstock and Shapiro (1988) for a comprehensive

application example).

Consider a two stage version of the scenario tree in Figure 1: formulation SLP1 can be

arranged into SLP3, with stage one and recourse parts explicitly identi�ed and recognized.

The L-shaped decomposition partitions SLP3 into a master problem and a subproblem as

shown in the following formulations. The master problem includes the stage one problem

and an additional variable θ which represents an approximation for the recourse problem.

The subproblem is made up by the recourse problem. Notice that with this separation,

the subproblem decomposes into independent scenario problems. The algorithm, outlined

below, solves the master problem and the subproblems, iteratively. At each iteration, the

solution to the subproblems is used to add a linear constraint in an e�ort to improve the

approximation of θ for the recourse problem. These constraints, which are referred to as
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Algorithm 2 L-shaped decomposition algorithm
k ← 1
repeat

Solve Master⇒ X∗, θ∗

(Xk, θk)⇐ X∗, θ∗

for all s ∈ S do
Solve Subs(X

k)
Master += θ ≥ gkX + hk {From the dual objective function}
k ← k+1

until ∑
s∈S z∗

Subs(Xk)
− θk ≤ tolerance

optimality cuts, are formed by the dual objective function of the subproblems at the current

solution.

SLP3

min cxX + min Q(X)

subject to

AX = b

Q(X) = min
∑
s∈S

psc
y
sYs

AsYs = bs −BsX ∀s ∈ S

Master
min cxX + θ

subject to

AX = b

θ ≥ gkX + hk ∀k ∈ K

Sub(X)

min
∑
s∈S

psc
y
sYs

subject to

AsYs = bs −BsX ∀s ∈ S

Note that the recourse problem may be infeasible with respect to some of the solutions

generated by the master problem. In this case, feasibility cuts are generated to restrict

the feasible space of the master problem. This mechanism is very similar to that of the

optimality cuts, therefore we omit discussion of feasibility cuts for brevity of exposition. A

more complete description of the L-shaped algorithm can be found in Birge and Louveaux

(1997).
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2.3 Modeling language requirements

In order to support the Lagrangian relaxation algorithm, the nonanticipativity (NA) con-

straints should be accessible by the modeler through an abstract interface. The interface

should provide functions for (i) accessing individual NAs associated with any node and in-

specting their contents, (ii) dualizing the NA constraints, that is relaxing selected NAs and

adding the relaxation to the objective function with appropriate dual multipliers, (ii) ac-

cessing the variables related to the NAs in a given node. These features would provide an

interface to implement variations of the Lagrangian algorithm, either as exact or heuristic

methods.

On the other hand, to support the L-shaped algorithm for two stage models, the language

should provide an interface for (i) accessing the dual objective function of a given primal

model, (ii) representing a model as a function of a given set of decision variables. These

requirements can be best satis�ed by an object oriented approach. Such an approach would

be centered around a model class and a constraint class that would encapsulate all the

elements of a SLP model and NA constraints respectively. These classes would provide a

high level interface for the required functionality.

We base the proposed design on the open source AMPS package APLEpy, being developed

by Karabuk (2005). There are two reasons for this choice, (i) the APLEpy software is open

source, therefore the design can be implemented and made available to the community, (ii)

the APLEpy software is based on the Python programming language, which provides an

object oriented development environment that suits particularly well for implementing the

requirements of the proposed design.

In the next section we �rst describe the current state of the APLEpy package, then we

present the proposed language extensions for APLEpy.
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3 The foundation of the design

The APLEpy package is made up of Python classes to represent model data, decision vari-

ables, objective function and constraints. A mathematical programming model can be de-

scribed in Python, using built in language constructs and data types, and the APLEpy

classes. We refer to a model coded in Python/APLEpy as an APLEpy model for brevity.

Currently, the APLEpy package supports linear models, and SLP models. It is available as

a free download at sourceforge.net, which is a large repository of open source projects.

3.1 An example problem

We consider the fabric production planning problem in textile manufacturing industry, de-

velop an algebraic formulation that describes the problem, and brie�y outline how to code it

in APLEpy. A fabric manufacturing plant receives yarn as raw material and weaves it into

fabric on machines called looms. Final fabric products are referred to as styles. Typically,

a loom is capable of producing any style that the plant processes. Once a loom is con�g-

ured for a style, it can produce it without any change until it is re-con�gured for another

style, which requires a costly changeover process. A loom could be kept idle and preserve

its con�guration or it could produce to inventory in order to avoid changeover costs later

on. The fabric production planning problem captures the trade o� between inventory and

changeover costs over a planning horizon of several periods. An important aspect of this

decision problem is that demand for styles is a random variable.

The �rst step in developing a SLP formulation is to determine the random parameters, and

stages at which they unfold. In this problem demand is the main source of uncertainty. The

loom con�guration decisions are made initially for the whole planning period independent

of any particular demand realization. Thus, loom con�guration, and changeover decisions

are stage one decisions. They are associated with the root node of a scenario tree. Demand

for a particular period (of all styles) become known at the start of a period, after which
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production decisions are made, and inventories are observed as recourse. Thus, time periods

in the planning horizon correspond to recourse stages. For example, stages 2 through 5 in

Figure 1 correspond to periods 1 through 4 in this problem. This representation scheme

captures the fact that production and inventory decisions of a planning period are delayed

until after uncertainty clears in that period and the e�ects of decisions in the preceding

period is observed, while uncertainty still exists in the succeeding periods.

Let i (i = 1..N) be the style index, t (t = 1..T ) be the period index, and s (s = 1..S) be the

scenario index. For simplicity, we use the same notation for the name of an index set and its

cardinality, (e.g. t = 1..T or t ∈ T ). The decision variables are; Xit: the number of looms

con�gured for style i in t, Zit: the number of looms that are recon�gured for style i in t, Yits:

the number of looms that operate and produce style i in t under s, and Iits: the amount

of inventory of style i carried in t under s. A loom either produces through a period at a

constant rate of ri or it is kept idle. Therefore, all decision variables except I are integer.

Let cI , and cZ denote the inventory and changeover costs respectively. We also de�ne m as

the total number of looms available and dits demand for style i in t under s. For brevity

Ii0s and Xi0 represent initial inventory and initial loom con�guration respectively. We can

develop a SLP formulation by using either the node based representation or a scenario based

representation with explicit NA constraints, both of which are supported in APLEpy. We

choose to proceed with the latter approach and present a formulation below.
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Model SPP:

minimize
∑
i∈N

∑
t∈T

cZZit+
∑
i∈N

∑
t∈T

∑
s∈S

psc
IIits (3)

subject to∑
i∈N

Xit = m ∀t ∈ T (4)

Xit −Xit−1 − Zit ≤ 0 ∀i ∈ N, t ∈ T (5)
Yits ≤ Xit ∀i ∈ N, t ∈ T, s ∈ S (6)

Yitsri + Iit−1s = dits + Iits ∀i ∈ N, t ∈ T, s ∈ S (7)
Yits = Yits

′ ∀s, s′ ∈ {NAts|(t, s) ∈ E} (8)
Iits = Iits′ ∀s, s′ ∈ {NAts|(t, s) ∈ E} (9)

X,Y,Z ∈Z+, I ∈ <+

The objective (3) is to minimize the total of changeover and expected inventory carrying

costs. In each period, every loom has to have a con�guration, which is captured by (4).

Constraints (5) track the number of changeovers in each period, and they make up stage one

constraints together with (4). We choose to represent stage one decisions (X,Z) as they are,

rather than de�ning one set for each scenario and imposing related NA constraints explicitly.

This is because this representation di�erentiates stage one variables in a more intuitive way.

Constraints (6), and (7), limit production capacity to the number of con�gured looms, and

impose material balance relations respectively. These constraints are de�ned for each scenario

individually, and they make up the recourse constraints. The NA constraints on recourse

variables Y, and I are described in (8), (9) respectively. The notation NAts refers to the set

of scenarios that share node (t,s), and E refers to the set of event nodes, excluding the root

node.

We think that model SPP presents a more intuitive formulation, compared to a node based

formulation in which NA constraints are not needed explicitly. In Model SPP, the modeler's

emphasis is on complete scenarios that represent one full description of the problem with re-

spect to a complete state of future. The disadvantages, however, are that NA constraints are

tedious to create manually, and that they increase the size of the problem considerably. The
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APLEpy package e�ectively addresses these issues. It manages the NA constraints trans-

parently to the user, and maps the scenario based formulation to a node based formulation

internally, thus sending the same formulation to the solver in either formulation.

Next we show the means APLEpy provides for supporting SLP formulations, and a part of

APLEpy code that implements Model SPP.

3.2 The existing SLP support in APLEpy

The APLEpy package is organized into modules. The LP module provides the basic function-

ality for description of a linear model, and the SLP module provides extensions to support

SLP model description. A detailed description of the APLEpy's design and use can be found

in Karabuk (2005). In the heart of the SLP module lies the scenario_tree class, which reads

a specially formatted data �le that describes a scenario tree. It creates all the required data

structures and makes them available for use with APLEpy classes. The scenario data �le

constitutes one line of description for each node in the tree in the format shown in the �rst

row of Table 1 with an example shown in row 2. Every node has to be labeled uniquely

within a stage. The label could be either a number or an informative string that describes

the signi�cance of the associated event node. Parent node �eld refers to the label of the

parent node at the previous stage. Node probability is the conditional probability of the

associated event. The rest of the data �elds constitute values of a random vector (n > 1) or

a scalar (n = 1) associated with the node.

Table 1: Data input format for scenario tree
Stage Node label Parent node Node probability Rate1 Rate2 ... Raten
2 Low_demand High_demand 0.25 -0.2 0.05 ... 0.4

Table 2 below shows the properties/methods provided by the scenario_tree class.
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Table 2: Methods provided by scenario_tree class.
Property/Method Return value
event_nodes a list that contains event nodes E : {(t, s)|(t, s) ∈ E}
cprob a dictionary of path probabilities for each node (t,s)
sprob a list of scenario probabilities for each scenario s
prev a dictionary with key, value pairs as (t,s):prev(t,s)
scenarios a list of scenarios
stages a list of stages
rate[i], i ∈ R the ith dictionary of values associated with each node (t,s)

The SLP module also provides classes SLP.data, SLP.var and SLP.constraint, which are de-

rived from their counterparts in the LP module. The objects from these classes are initialized

with an object of type SLP.scenarios, and optionally with an object of type SLP.stages,

both of which are created by an SLP.scenario_tree object.

Model SPP can be implemented with the constructs described above. Listing (1) below

shows the part of the complete APLEpy code that highlights SLP features. In the listing,

Python keywords are underlined, and APLEpy classes are di�erentiated by pre�x LP and

SLP.

Listing 1: APLEpy code excerpt (Model SPP)
1 from APLEpy import LP
2 from APLEpy import SLP

4 Tree = SLP.scenario_tree('tree.dat')
5 p = Tree.sprob
6 SCEN = Tree.scenarios
7 WKS = Tree.stages

9 rate1 = Tree.rates [0]
10 ch = SLP.data(WKS , SCEN)
11 ch(rate1)

13 ...

15 Y = SLP.var(STYLS , WKS , SCEN , type=LP_integer , UB = total_looms)
16 I = SLP.var(STYLS , WKS , SCEN)

18 ...
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20 capacity = SLP.constraint(STYLS , WKS , SCEN)
21 demand = SLP.constraint(STYLS , WKS , SCEN)

23 ...

25 Total_Expected_Costs.Minimize =
26 sum(cz*Z[i,t] for i in STYLS for t in WKS) +
27 sum(p[s]*ci*I[i,t,s] for i in STYLS for t in WKS for s in SCEN)

29 ...

31 for (i,t,s) in ((i,t,s) for i in STYLS for t in WKS for s in SCEN):
32 capacity[i,t,s] = Y[i,t,s] <= X[i,t]

34 for (i,t,s) in ((i,t,s) for i in STYLS for t in WKS for s in SCEN):
35 if t==1:
36 demand[i,t,s] = Y[i,t,s]*r[i] + Io[i] ==
37 d[i,t]*(1+ch[t,s]) + I[i,t,s]
38 else:
39 demand[i,t,s] = Y[i,t,s]*r[i] + I[i, t-1, s] ==
40 d[i,t]*(1+ch[t,s]) + I[i,t,s]

42 LP.Solve()

The syntax of the code is self explanatory, therefore we will focus on describing the function-

ality. Lines 1-2 import the required APLEpy modules. An object of type SLP.scenario_tree

is created from input �le 'tree.dat' in line 4. The scenario probabilities, and scenarios and

stages objects are created and assigned to local variables in lines 5-7 respectively. The �rst

rate vector is captured (line 9) and used to initialize an object of type SLP.data (line 11). In

this example, the rates values represent fractional changes applied to a base demand vector

(which is input separately) at each event node (t,s). Another approach would be to input as

many rates �elds as the total number of styles in which case the rate of change with respect

to the base demand would be di�erent for all styles. The input scenario tree excludes the

root node, therefore, the stages returned by the Tree object (line 7) correspond directly to

the planning periods. This is because, in this particular formulation we choose to handle

stage one decisions, which are associated with the root node, explicitly.

The recourse variables and the recourse constraints are declared with scenarios as part of their
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index set in lines 15-16 and 20-21 respectively. The objective function is described in lines

25-27. The formulation is completed with the description of the recourse constraints in lines

31-40. A model is compiled from all the elements described in the (complete) code and sent

to the solver in line 42. Notice that NA constraints are not speci�ed explicitly. The APLEpy

objects handle them implicitly by consulting the scenario tree speci�cations. Technically,

the implementation is based on intercepting the stage and scenario indices before they are

used, in any manner, by the respective SLP objects, and map them to the corresponding node

index in the scenario tree. The result is that the formulation that is passed on to the solver

is the same as the node based compact formulation of the same problem.

4 The proposed design

In the current implementation of APLEpy, the NA constraints are implicitly managed in a

transparent manner to the modeler. We develop an interface for accessing and manipulating

the NA constraints that are managed behind the scenes. To this end, we add methods and

properties to the LP.constraint class, and we create a new class SLP.NAconstraint derived

from LP.constraint. The proposed additions are listed in Tables 3 and 4 for the two classes

respectively.

Table 3: Functionality provided by the LP.constraint class.

Property/Method Return/a�ect
dual return the current dual value

accept an assignment (writable)
relax relax the constraint(s) in the model
dualize relax, multiply with its dual and add

to the objective function of the model
infeasibility return the amount of feasibility violation

at current values of decision variables

The dual property returns the current dual value associated with the subject constraint. We
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Table 4: Functionality provided by SLP.NAconstraint class.

Iterator Return value
NActrobject[nodeindex ] a single NA constraint at event node nodeindex
NActrobject[nodeindex ].NAVar() a list of decision variables (objects of type LP.var)

of the same type at event node nodeindex

propose that this value be assignable as well, so that when the dual problem is solved by

a user de�ned algorithm, its values can be updated externally. The relax method relaxes

the subject constraints in the associated model, whereas the dualize method multiplies the

relaxed constraints with their associated dual multipliers and places them in the objective

function. The infeasibility method measures the amount of infeasibility of the relaxed

constraint(s), at the current solution, and returns the value. All the properties and methods

we discuss here apply to both a collection of objects or to a single object depending on the

context of use. For example, the dualize method, if called by an object of type LP.constraint

without any index, dualizes the whole collection of the constraints contained by the object.

On the other hand, if it is called with a speci�c index, then it dualizes only one constraint

referred to by the index.

The SLP.NAconstraint class provides additional functionality based on the special structure

of the NA constraints. An object of type SLP.NAconstraint contains the whole collection

of NA constraints. It cannot be created directly, but it is returned by an object of type

SLP.model, which we will describe in detail below. It is indexed by event nodes only. As it

is clear from the formulations of previous sections, each node index refers to a collection of

NA constraints. Therefore, it is not possible to access a single NA constraint with a speci�c

index. We picked this design, because (i) we were not able discover a meaningful abstraction

to refer to individual NA constraints, and (ii) partly because of (i), we think that a modeler

would not have a need to do so. However, we provide a general way of accessing and

examining individual NA constraints by Python iterators. A Python object, of a class that

de�nes an iterator, can be used in a loop returning elements from the collection of objects
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that the iterator is de�ned on. The design provides two iterators with the SLP.NAconstraint

class. One returns individual NA constraints from a given node index, and the other returns

a collection of decision variables referred to by the same object.

For example, consider the scenario tree in Figure 1 and model SPP. Assume that the following

are the complete set of NA constraints at node (3,4): Y34 = Y35, Y35 = Y36, I34 = I35,I35 = I36.

The �rst iterator would return each of the four constraints sequentially. The second iterator

would loop twice and it would return (Y34, Y35, Y36), and (I34, I35, I36) in sequence.

Similarly, we propose to add properties/methods to the LP.model class, and create a new

class, SLP.model, derived from the LP.model class. Tables 5 and 6 list the proposed function-

ality for the two classes respectively.

Table 5: Functionality provided by LP.model class.

Property/Method Return/a�ect
objectiveFnValue the objective function evaluated at

current solution
infeasibility total amount of feasibility violation

over all relaxed constraints at current solution
dualObjectiveFn returns the objective function of the dual model

as a function of the primal decision variables
call( )
LPmodelobject(LPvar1 , LPvar2 ,.) object of type LP.model as a function of argument

variables, i.e. variables are �xed at current value

The �rst property we want to include in the LP.model class is objectiveFnValue. This is

more of a convenience rather than a necessity. When dealing with more than one model

(hence multiple objective functions), remembering the name of the objective function may

be a chore, especially if a long descriptive name is given. This property of the class returns

the value of the objective function at the current solution. The same value can be obtained

by calling the objective function directly with its name. The next property, infeasibility,

returns the total of infeasibility over all relaxed constraints, if any. This is a shortcut over
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Table 6: Functionality provided by SLP.model class.

Property/Method Return value
nonAnticipativity object of type SLP.NAconstraint
deterministicModel object of type LP.model that describes

the expected value problem
stageOne object of type LP.model for the stage one problem
recourse object of type LP.model for the recourse problem
iterator
SLPmodelobject object of type LP.model for a scenario problem

calling all the relaxed constraints individually and summing their infeasibility results. The

dualObjectiveFn property returns the objective function of the dual problem as a linear

expression. It preserves the variables de�ned by the primal model and treats the dual

variables as parameters evaluated at the optimal solution. This feature can be used to

generate cuts in the L-shaped decomposition algorithm. The Python language provides

overloading the function call operator, which is applied by matching parenthesis to an object.

This feature enables an object to simulate a function call. We take advantage of this language

feature to treat a model as a function of a set of variables. The call operator has the e�ect

of �xing the values of the passed variables at their current solution. As a result they are

treated as parameters during the solution of the model.

The proposed features of the SLP.model class provides a high level interface for extracting

sub models from a given SLP model. The names of the properties are self explanatory. The

deterministic model is formed by taking expected value of the random parameters and drop-

ping the scenario index of recourse variables. The stage one and recourse models are formed

in a straightforward fashion. The stage one problem collects variables with no scenario in-

dex, and constraints that do not include any recourse variables. The remaining part of the

model constitute the recourse model. As such, this feature is most useful for two stage prob-

lems, or multistage problems that can be described as two stage models (Louveaux (1986)).

However, this provides a foundation for extending the properties to multistage models. The
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iterator de�ned on an object of type SLP.model returns individual scenario models as ob-

jects of type LP.model. Finally, the nonAnticipativity property returns an object of type

SLP.NAconstraints that encapsulates the NA constraints of the SP model. Note that the

SLP.model class is derived from LP.model class and it inherits all the methods/properties of

its parent class.

Next, we illustrate the use of this design in implementing the decomposition algorithms we

outlined in section 2.

4.1 The Lagrangian relaxation algorithm

Listing 2 below illustrates a basic implementation of the Lagrangian relaxation (LR) algo-

rithm to solve the example problem of section 3.

Listing 2: Implementation of Lagrangian Relaxation Algorithm
1 SPP = SLP . model ( Total_Expected_Costs ,
2 X , Z , Y , I ,
3 availability , changeover , capacity , demand )

5 AllNAs = SPP . nonAnticipativity
6 EVNODES = Tree . event_nodes

8 for node in EVNODES :
9 for NActrs in AllNAs [ node ] :
10 NActrs . dualize ( )

12 while True :
13 for sprob in SPP :
14 LP . Solve ( sprob )

16 if SPP . infeasibility <= tolerance :
17 break

19 for node in EVNODES :
20 for NActrs in AllNAs [ node ] :
21 for ctr in NActrs :
22 ctr . dual = ctr . dual + ctr . infeasibility ∗ delta

An object of type SLP.model is created, in lines 1-3, by passing the references to an objective
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function (line 1), decision variables (line 2), and constraints (line 3). The NA constraints, and

the set of event nodes needed to index them are extracted in lines 5, and 6 respectively. Lines

8-10 demonstrate how to access the NA constraints and how to dualize them. The NActrs

reference in line 10 refers to a collection of NA constraints associated with the corresponding

node index. Therefore, a set of NA constraints are dualized at the same time with one

statement.

Line 12 starts the iterations for the LR algorithm. The for statement in line 13 invokes

the iterator de�ned on class SLP.model and receives one model object each time it executes.

The returned scenario model is then solved in line 14. A simple termination condition is

checked in 16-17. The code in lines 19-22 accesses all the NA constraints individually and

updates the duals, by making use of the infeasibility amount at each NA constraint. Line

21 demonstrates the use of iterating through individual NA constraints without specifying

indices. The Python variables tolerance and delta are assumed to be user de�ned scalar

parameters.

We provide, in listing 2, an outline which does not directly correspond to any speci�c LR

algorithm application. A subgradient optimization based application would compute an

upper bound and update the dual multipliers with a more involved mathematical formula.

On the other hand, an augmented Lagrangian based application would look very similar to

the listing, except that the dualized terms in the objective function would be quadratic. The

means to complete both algorithms already exist in Python/APLEpy. We leave some of the

details, such as providing an easier way of specifying the form of dual terms in the objective

function, for implementation.

4.2 The L-shaped decomposition algorithm

Listing 3 below shows implementation of the L-shaped decomposition algorithm for a two

stage SLP.
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Listing 3: Implementation of L-shaped Decomposition Algorithm
1 Master = SPP . stageOne
2 Sub = SPP . recourse

4 While True :
5 LP . Solve ( Master )

7 recoursedualObjectiveFn = 0
8 for sprob in Sub (X , Z ) :
9 LP . Solve ( sprob )
10 recoursedualObjectiveFn += sprob . dualObjectiveFn

12 if ( Sub . objectiveFnValue − theta ) <= tolerance :
13 break
14 else :
15 Master += theta >= recoursedualObjectiveFn

The master problem (stage one) and the subproblem (recourse) are extracted from the orig-

inal model referred to by the SPP object in lines 1-2. Line 4 starts the iterations of the

decomposition algorithm. The master problem is solved in line 5, and the individual sce-

nario problems that make up the subproblem are solved one at a time through lines 8-10.

At the same time, the dual objective function of the subproblem is constructed progres-

sively from the solution of scenario models. Notice that the subproblem is called with stage

one decision variables as parameters (line 8). In line 12, the gap between the upper bound

(objective function value of the subproblem) and the lower bound (theta value) is checked

against a prede�ned tolerance value. If the termination criterion is not satis�ed, then, in line

15, an optimality cut is added as a linear constraint to the master problem. We assume that

an additional variable, theta, has been de�ned and added to the objective function of model

SPP which is then passed to the master problem. If applied to a SLP that does not have full

recourse (see Birge and Louveaux (1997)), the algorithm would include an additional step for

generating feasibility cuts, because some of the stage one solutions would cause an infeasible

recourse problem. We exclude this part for brevity, however, the means to complete the
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infeasibility step is in place.

The stochastic production planning model we de�ned in the previous section could also be

solved by the L-shaped decomposition algorithm, because it has block separable property.

However, the recourse part is still multistage and therefore does not decompose into indepen-

dent scenario problems. Hence, the for loop in lines 8-10 would reduce to a single statement

solving the subproblem as a whole.

4.3 Developing heuristic algorithms

Although we speci�cally focus on supporting mathematical decomposition algorithms for

solving SLP models, the resulting design is general in that it can be used to implement other

heuristic algorithms. In order to illustrate this, we �rst show in listing 4 below, the calculation

of EVPI (expected value of perfect information) and VSS (value of stochastic solution) values

for SLPs (see Birge and Louveaux (1997)). The EVPI and VSS are standard measures that

are used to quantify the bene�ts and the quality of applying a SLP model respectively.

Listing 4: Computation of VSS and EVPI values
1 LP . Solve ( SPP )
2 SP = SPP . objectiveFnValue
3 PI = 0
4 for sprob in SPP :
5 LP . Solve ( sprob )
6 PI += sprob . objectiveFnValue
7 EVPI = SP − PI

9 DPP = SPP . deterministicModel
10 LP . Solve ( DPP )
11 LP . Solve ( SPP (X , Z ) )
12 EEV = SPP . objectiveFnValue
13 VSS = EEV − SP

Lines 1-7 compute the EVPI value, which is the solution to the original SLP model (SPP)

less the PI (perfect information) value. The PI value is computed by solving each scenario

problem independently and summing their objective function values (lines 4-6). Notice that
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there is no need to relax NA constraints to iterate over SPP. The SLPmodel object handles

this internally. The VSS value, which is the EEV (expected value of expected value solution)

less the solution value to SPP, is computed in lines 9-13. The EEV value is computed in two

steps: (i) extract the deterministic correspondent to SPP and solve it (lines 9-10), (ii) solve

model SPP as a function of the stage one solution computed by the deterministic model

(DPP).

Next, in listing 5, we illustrate an implementation of a simple heuristic, which is inspired

by the rounding heuristic commonly applied to solve integer models. The original heuristic

relaxes integrality requirements, and iteratively solves and rounds of fractional values until

a complete integer-feasible solution is achieved.

Listing 5: A Heuristic Rounding Algorithm for SLP
1 EVNODES = Tree . event_nodes
2 Varlist = [ ]

4 AllNAs = SPP . nonAnticipitivity
5 AllNAs . relax ( )

7 while True :
8 for sprob in SPP ( Varlist ) :
9 LP . Solve ( sprob )

11 if SPP . infeasibility <= tolerance :
12 break

14 for node in EVNODES :
15 for NActrs in AllNAs [ node ] :
16 if ( NActrs . infeasibility < limit ) :

18 for NAvars in AllNAs [ node ] . NAvar ( ) :
19 average = sum ( NAvars ) / len ( NAvars )
20 for var in NAvars :
21 var = average
22 Varlist += var

The set of event nodes are extracted for use in indexing the NA constraints, and an empty

list is created in lines 1, and 2 respectively. The purpose of the object Varlist is to contain

references to the decision variables whose values are �xed by the algorithm. Next, NA
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constraints are extracted and relaxed (lines 4-5). The iterations start in line 7. The �rst

step is to solve all the scenario problems (lines 8-9), and check overall infeasibility in SPP (line

11). Notice that SPP object is called with a list of decision variables whose values are �xed.

Therefore, the scenario models returned by the iterator de�ned on SPP assume the �xed

variables as parameters. Through lines 14-16, the total of infeasibility over the collection

of NA constraints at each event node is checked and compared against a prede�ned limit

value. If the overall infeasibility at a node is under the limit value, then, through lines 18-22,

the values of variables involved with the NA constraints at the node, are averaged and �xed.

The for statement in line 18, demonstrates the use of the second iterator (row 2 of Table

5) de�ned on object of type SLP.NAconstraint. At each iteration of the for loop, NAvars

refers to a list of variables of the same name, but of di�erent indices. The Python built in

functions sum() and len() return the sum of the current values of the variables in the list,

and the total number of variables in the list respectively. The for loop in line 20 iterates

over individual decision variables in the list, assigns the average to each, and adds to the

list of �xed variables. The while loop continues until the termination criterion in line 11 in

satis�ed.

This solution algorithm, in its general form, would not be applicable to most SLP problems.

This is because, as the decision variables are progressively �xed, the remaining problem

could be infeasible. However, as with the original heuristic that inspired this one, this is

simply a framework which should be applied with problem speci�c details. Nevertheless, it

clearly demonstrates the use of the language constructs we have designed for creating and

implementing algorithms for solving SLP models.

As another example, consider a nested decomposition approach for solving model SPP of the

previous section. We apply L-shaped decomposition as the �rst level, and apply Lagrangian

relaxation to solve the subproblem as the second level. This can easily be implemented based

on the code in listings 2 and 3.

An important consequence of the object oriented nature of the design and of the APLEpy
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environment is that, the code for an algorithm can be used with little or no modi�cation to

solve another model that shares the same assumptions. This feature can be clearly observed

from the code listings. There are no problem speci�c references to any model elements, with

the exception of specifying the names of stage one variables in listing 3.

5 Conclusion

We present a design for extending algebraic modeling languages in support of developing

solution algorithms at a high abstraction level. The design is object oriented and centered

around a model class for a stochastic linear program and a constraint class for nonanticipa-

tivity conditions. These classes provide an abstract interface in manipulating their contents

for well de�ned tasks that would otherwise be done by a modeler. For example, consider

the dualObjectiveFn method of (S)LP.model class. A modeler could go through the whole

formulation and construct the dual objective function manually by applying well de�ned

rules. However, these kinds of well de�ned and repetitive tasks are best handled by the

development environment. Therefore, the contribution of this design, if implemented, is to

considerably reduce algorithm development time for solving large scale SLP models.

A byproduct of this design is to introduce the concept of a special purpose constraint type,

namely for nonanticipativity constraints. There are specially structured constraints in many

model types, such as inventory balance constraints in production planing problems, or mate-

rial �ow balance constraints for network models. In current AMLs all the problem constraints

are described explicitly by a modeler. The next level of abstraction would be to specify the

type of a constraint, which would then be created and maintained by the development envi-

ronment. An interface would also be provided for querying and manipulating its contents by

the modeler. We can extend this concept further to the model level by providing means to

specify a model type (e.g. transportation, or multi-stage SLP etc). The environment would

then create a model object that includes base features that are common to all instances of
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the speci�ed type. The modeler's task would then be reduced to specifying the input data

and the non-standard features of the particular model.

The immediate next step in this research is to implement the design in APLEpy environment.

The design is created with implementation in mind, therefore there are neither technological

nor licensing limitations for implementation. The implementation should provide more in-

sights, with which the main concept can be extended beyond SLP models. In fact, the design

could already handle general models, because the main functionality is encapsulated in the

core LP classes. However, it requires a through testing before we can make this conclusion.

Of particular importance for future research is to cover nested application of the L-shaped

algorithm to solve multistage problems. As it is, the complexity of this algorithm prevents

it from becoming widely practised.

According to this author, a major use of this design is for teaching. One of the better ways of

teaching SLP and associated solution algorithms is to demonstrate their use with software.

In this author's experience it takes a long time for students to be comfortable with the NA

constraints and be able to implement decomposition algorithms in any AML. The APLEpy

environment, with the proposed design, would reduce the learning time in such courses.
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